Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jörg A. Schachner, ${ }^{\text {a }}$ Clinton L. Lund, ${ }^{\text {a }}$ J. Wilson Quail ${ }^{\text {b }}$ and Jens Müller ${ }^{\text {a }}$ *

${ }^{\text {a }}$ Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, Canada S7N 5C9, and
${ }^{\mathbf{b}}$ Saskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, Canada S7N 5C9

Correspondence e-mail: jens.mueller@usask.ca

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.047$
$w R$ factor $=0.119$
Data-to-parameter ratio $=19.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

The first aluminium-bridged [1.1]ferrocenophane

The structure of the title compound, bis(μ-ferrocene-1,1'-diyl)bis[chloro($N, N, N^{\prime} N^{\prime}$-tetramethylethylenediamine)aluminium], $\left[\mathrm{Al}_{2} \mathrm{Fe}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{4}\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}\right)_{2}\right]$, possesses a center of inversion and an anti conformation. Bound to each Al atom in the bridging position are one Cl atom and one molecule of $N, N, N^{\prime} N^{\prime}$-tetramethylethylenediamine (TMEDA). The angle between the least-squares planes of the two cyclopentadienyl (Cp) ligands is $3.6(3)^{\circ}$. The five C atoms in the Cp rings are staggered on average at an angle of 10.3 (5) ${ }^{\circ}$.

Comment

Recently, we synthesized the first [1]aluminaferrocenophane, (I), by a metathesis reaction of $1,1^{\prime}$-dilithioferrocene•0.67TMEDA and $(\mathrm{Pytsi}) \mathrm{AlCl}_{2}\left[\mathrm{Pytsi}=\mathrm{C}\left(\mathrm{SiMe}_{3}\right)_{2} \mathrm{SiMe}_{2}\left(2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right.$ and TMEDA $=N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine] using toluene as a solvent. Compound (I) was isolated as a crystalline material with one half-molecule of ferrocene $\left(\mathrm{FeCp}_{2}\right)$ in the asymmetric unit (Schachner et al., 2005). We assume that FeCp_{2} results from the protolysis of $1,1^{\prime}$-dilithioferrocene, with toluene being the source of protons. Consequently, we substituted toluene by the less acidic solvent hexane with the intention of optimizing the synthesis of (I). However, the title compound, (II), was the only isolable product from this reaction (isolated yield 9\%).

(II)

Compound (II) is a [1.1]dialuminaferrocenophane in which each Al atom still carries one Cl atom and is coordinated by one molecule of TMEDA. So far, we could neither clarify how compound (II) is formed nor optimize its synthesis by a rational approach starting from $1,1^{\prime}$-dilithioferrocene•0.67-

Figure 1
An ORTEP-3 view (Farrugia, 1997) of molecule (II), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) $-x,-y,-z$.]

TMEDA and AlCl_{3}. To the best of our knowledge, there are no reports in the literature of other [1.1]dialuminaferrocenophanes; only similar boron (Scheibitz et al., 2003) and gallium [1.1]ferrocenophanes (Uhl et al., 2001; Jutzi et al., 2001; Althoff et al., 2002, 2003) are described.

Experimental

A slurry of $1,1^{\prime}$-dilithioferrocene•0.67-TMEDA ($582 \mathrm{mg}, 2.11 \mathrm{mmol}$) in hexane (20 ml) was added dropwise to a cooled (263 K) slurry of (Pytsi) $\mathrm{AlCl}_{2}(826 \mathrm{mg}, 2.10 \mathrm{mmol})$ in hexane $(60 \mathrm{ml})$ and stirred for 72 h at room temperature. The resulting mixture was filtered to yield a light-red solution. After removal of some hexane in vacuum, orange crystals of (II) formed at $240 \mathrm{~K}(68 \mathrm{mg} ; 9 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 0.93-2.29$ ($m, 16 \mathrm{H}$, TMEDA), 4.39 ($m, 2 \mathrm{H}, \mathrm{Cp}$), 4.51 $(m, 2 \mathrm{H}, \mathrm{Cp}), 4.68$ ($m, 2 \mathrm{H}, \mathrm{Cp}$), $5.16(m, 2 \mathrm{H}, \mathrm{Cp})$.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Al}_{2} \mathrm{Fe}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{4}\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}\right)_{2}\right]} \\
& M_{r}=725.30 \\
& \text { Triclinic, } P \overline{1} \\
& a=7.8491(2) \AA \\
& b=10.2612(3) \AA \\
& c=11.2111(5) \AA \\
& \alpha=78.5212(12)^{\circ} \\
& \beta=89.0564(12)^{\circ} \\
& \gamma=73.722(2)^{\circ} \\
& V=848.68(5) \AA^{3}
\end{aligned}
$$

Data collection

Nonius KappaCCD diffractometer
φ scans, and ω scans with κ offsets
Absorption correction: none
7256 measured reflections
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=27.5^{\circ}$

3869 independent reflections
2697 reflections with $I>2 \sigma(I)$

Refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.047 P)^{2}\right. \\
& \quad+0.4054 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.76 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.120$
$S=1.04$
3869 reflections
194 parameters
H-atom parameters constrained
$h=-10 \rightarrow 10$
$h=-10 \rightarrow 10$
$k=-13 \rightarrow 13$
$l=-14 \rightarrow 14$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Al1-C1	$1.954(3)$	$\mathrm{Fe} 1-\mathrm{C} 2$	$2.034(3)$
$\mathrm{Al1}-\mathrm{C} 6$	$1.958(3)$	$\mathrm{Fe} 1-\mathrm{C} 3$	$2.038(3)$
$\mathrm{Al1}-\mathrm{N} 1$	$2.040(3)$	$\mathrm{Fe} 1-\mathrm{C} 4$	$2.044(3)$
$\mathrm{Al1}-\mathrm{Cl} 1$	$2.1594(12)$	$\mathrm{Fe} 1-\mathrm{C} 5$	$2.053(3)$
$\mathrm{Fe} 1-\mathrm{C} 1$	$2.081(3)$		
$\mathrm{C} 1-\mathrm{Al} 1-\mathrm{C} 6$	$119.59(14)$	$\mathrm{C} 6-\mathrm{Al} 1-\mathrm{Cl} 1$	$112.74(10)$
$\mathrm{C} 1-\mathrm{Al} 1-\mathrm{N} 1$	$101.62(12)$	$\mathrm{N} 1-\mathrm{Al} 1-\mathrm{Cl} 1$	$101.45(8)$
$\mathrm{C} 6-\mathrm{Al1}-\mathrm{N} 1$	$103.03(11)$		
$\mathrm{C} 1-\mathrm{Al1}-\mathrm{Cl} 1$	$114.94(10)$		
$\mathrm{C} 6-\mathrm{Al} 1-\mathrm{C} 1-\mathrm{C} 2$	$179.6(3)$	$\mathrm{Cl} 1-\mathrm{Al} 1-\mathrm{C} 1-\mathrm{C} 2$	$-41.4(3)$
$\mathrm{N} 1-\mathrm{Al} 1-\mathrm{C} 1-\mathrm{C} 2$	$67.2(3)$		

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances ranging from 0.95 to $0.99 \AA$, and included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})$ values constrained to be 1.2 times $U_{\text {eq }}$ of the carrier atom.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

We thank the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant), the Department of Chemistry and the University of Saskatchewan for their generous support. The authors also thank the Canadian Foundation for Innovation and the Government of Saskatchewan for funding of the X-ray laboratory.

References

Althoff, A., Jutzi, P., Lenze, N., Neumann, B., Stammler, A. \& Stammler, H.-G. (2002). Organometallics, 21, 3018-3022.

Althoff, A., Jutzi, P., Lenze, N., Neumann, B., Stammler, A. \& Stammler, H.-G. (2003). Organometallics, 22, 2766-2774.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Jutzi, P., Lenze, N., Neumann, B. \& Stammler, H.-G. (2001). Angew. Chem. Int. Ed. 40, 1424-1427.

metal-organic papers

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.

Schachner, J. A., Lund, C. L., Quail, J. W. \& Müller, J. (2005). Organometallics, 24, 785-787.

Scheibitz, M., Winter, R. F., Bolte, M., Lerner, H.-W. \& Wagner, M. (2003). Angew. Chem. Int. Ed. 42, 924-927.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Uhl, W., Hahn, I., Jantschak, A. \& Spies, T. (2001). J. Organomet. Chem. 637, 300-303.

